Filching Quarry
Jevington, East Sussex

Geotechnical Assessment

HAULAWAY LIMITED

March 2007
SLR Ref: 402-0978-00002
CONTENTS

1.0 INTRODUCTION
1.1 General
1.2 Site Details
1.3 Site History
1.4 Planning Permission
1.5 Health & Safety Executive
1.6 Future Proposals

2.0 GEOTECHNICAL ASSESSMENT
2.1 Summary of Walkover Assessment
 2.1.1 Joint Orientations
 2.1.2 Failure Mechanisms
2.2 Primary Identified Issues
 2.2.1 Southern Face
 2.2.2 Northern Face
 2.2.3 Western Face
 2.2.4 Eastern Face
2.3 Quantitative Stability Analysis
 2.3.1 Assumptions Made Before Analysis
 2.3.2 Analysis

3.0 DISCUSSION AND RECOMMENDATIONS
3.1 Regrading Quarry Faces
3.2 Buttress Quarry Faces
3.3 Suggested Programme for Restoration

FIGURES
Figure 1: Typical problems, critical parameters, methods of analysis and acceptability criteria for slopes
Figure 2: Existing steep quarry face stability analysis output
Figure 3: Benched quarry face stability analysis output

DRAWINGS
Drawing 1 Site Location Map
Drawing 2 Topographical Survey (October 2005)
Drawing 3 Geological Map Extract
Drawing 4 Hydrogeological Map Extract
Drawing 5 Historical Map Extract (1879)

APPENDICES
Appendix A Walkover Survey Observations
Appendix B Site Photographs
Appendix C Joint Observation Stereographic Projections
Appendix D Prohibition Notice
Appendix E Planning Permission
1.0 INTRODUCTION

1.1 General

This document presents a Geotechnical Assessment Report undertaken by SLR Consulting Limited (SLR) on behalf of Haulaway Limited for Filching Quarry. The site is located in the small hamlet of Filching between Jevington and Polegate, approximately 3.5km northwest of Eastbourne, Kent.

The site is a former chalk quarry and is currently non-operational due to a prohibition notice\(^1\) issued by the Health & Safety Executive in 1990. This was due to instability noted in the existing steep quarry faces.

The geotechnical assessment has been undertaken to determine the current condition of the quarry. This document will then be used as a basis in establishing a future safe method of working to satisfy the requirements of the Prohibition Notice so that the site can then be safely restored, as required by the planning conditions.

The quarry is not operational and no further working of the site for mineral extraction is proposed; as such, it is not considered necessary to provide a formal Geotechnical Assessment as required by the Quarry Regulations\(^2\), 1999.

1.2 Site Details

<table>
<thead>
<tr>
<th>Name:</th>
<th>Filching Quarry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Reference:</td>
<td>County Ref: MR1 & K/48/574</td>
</tr>
<tr>
<td></td>
<td>District Ref: WD/97/6066/FCM</td>
</tr>
<tr>
<td>National Grid Reference:</td>
<td>556400,102900 (Approximate centre of quarry)</td>
</tr>
<tr>
<td>Previous Reports:</td>
<td>No previous reports exist.</td>
</tr>
<tr>
<td>Construction Drawings:</td>
<td>The quarry is no longer operational; no construction drawings exist at the time of preparation of this report.</td>
</tr>
<tr>
<td>Site Survey:</td>
<td>A site survey was completed in May 2005 by SLR Consulting Ltd and is included as Drawing No. 2.</td>
</tr>
<tr>
<td>Quarry Face Height:</td>
<td>30-56m.</td>
</tr>
<tr>
<td>Geology:</td>
<td>The quarry is excavated into the Middle and Lower Chalk(^3) with the Melbourn Rock, the lower unit of the Middle Chalk, clearly visible in the quarry face. A copy of the geological map covering the site and surrounding area is included as Drawing 3.</td>
</tr>
<tr>
<td>Groundwater:</td>
<td>Groundwater is indicated on the hydrogeology map(^4) as lying at approximately 45m AOD, roughly coincident with the base of the quarry. This level may be influenced by seasonal variations. A copy of the hydrogeological map covering the site and surrounding area is included as Drawing 4.</td>
</tr>
</tbody>
</table>

\(^1\) Prohibition Notice issued for Filching Quarry, Jevington, East Sussex, dated 14/06/1990, Ref P900263.
\(^2\) The Quarry Regulations, 1999
\(^3\) Determined from the British Geological Survey solid and drift geology map 1:50,000 scale, sheet No. 319, Lewes, 1979.
\(^4\) Institute of Geological Sciences and Southern Water Authority. Hydrogeological Map of the South Downs and Adjacent Parts of the Weald, Scale 1:100,000, 1978.
1.3 Site History

Filching Quarry is recorded as Ash Chalk Pit on the 1879 historical map, included as Drawing 5. The Chalk from Filching Quarry was originally extracted for lime production, but has been intermittently worked since to produce fill materials for the construction industry.

More recently, in June 1990 a prohibition notice was issued by the Health & Safety Executive under the Health & Safety at Work Act 1974. The prohibition notice was issued to prevent any further extraction of mineral within any part of the quarry due to the risk from falls from the quarry face. No mineral extraction has taken place from the quarry since the prohibition notice was issued. A copy of the notice is included within Appendix D.

The quarry floor currently exists close to the top of the underlying aquifer, which poses a potential contamination risk to groundwater. The quarry lies within a groundwater source protection zone 3.

1.4 Planning Permission

A copy of the most recent planning permission for the site dated 31 October 1997 (County Ref: MR1 & K/48/574) is included within Appendix E. The planning document outlines a number of restrictions for operating the site as a quarry. The most salient points with regards to the geotechnical assessment and future restoration of the site are:

1. Extraction of the Chalk and restoration of the site shall be completed by 30 September 2017.

9. No further extraction shall take place until a scheme of working to include a statement and plans at 1:500 scale, has been submitted to and approved in writing by the Director of Transport and Environment…

11. No extraction shall take place within 5m of the application boundary.

14. The noise from operations on site shall not exceed 55dB Leq (1 hour) when measured at the point shown on the attached plan.

18. The site shall be secured on all boundaries by safety fencing to the satisfaction of the Director of Transport and Environment and the fence shall remain complete and intact for the duration of the development.

19. No development shall take place until a scheme for the landscaping of the site has been submitted to and approved in writing by the Director of Transport and Environment. The approved scheme shall provide for:

 a. the maintenance and management of existing trees and vegetation around the site;

 b. seeding and planting proposals adjoining the site entrance;

 c. a timescale for implementation.

20. No waste materials of any description shall be imported into the site, except as may be required for the construction of hardstanding and haul roads in accordance

5 1879 historical map extract of Filching Quarry obtained from www.old-maps.co.uk.
with arrangements to be previously agreed in writing by the Director of Transport and Environment.

21. No excavation shall take place until a detailed restoration scheme has been submitted to and approved in writing by the Director of Transport and Environment. The approved scheme shall detail arrangements for the restoration of the site for an amenity and wildlife after use and shall include the following matters:

 a. the proposals for regrading the quarried surface;

 b. the proposals for re-spreading overburden and soils to create a restored surface;

 c. measures to ensure adequate drainage and to control surface water;

 d. arrangements for the treatment of the restored surface;

 e. a timescale for implementation.

22. The aftercare scheme shall be submitted to the Director of Transport and Environment not later than one year prior to the completion of the agreed restoration scheme referred to... above or at such other time as may be previously approved in writing by the Director of Transport and Environment. The aftercare scheme shall include details of the site maintenance to accord with the restoration scheme.

23. The approved aftercare scheme shall be implemented for a period of not less than 5 years following the date of completion, to the satisfaction of the Director of Transport and Environment, of the restoration scheme referred to... above.

It should be noted that planning requires restoration of the site by September 2017 and that the restoration plan will require approval from the local planning authority.

1.5 Health & Safety Executive

As the prohibition notice prevents any further work being carried out within Filching Quarry until the HSE is satisfied that the quarry faces have been stabilised, the HSE was contacted to determine the necessary measures to have the prohibition lifted. Following discussion with Russell Adfield of the HSE, East Grinstead (01342 334200), it was indicated that prior to stabilisation works being carried out within the quarry, an appropriate health and safety plan and method statement describing a safe method of working should be provided to the HSE for review. Following approval by the HSE and any other interested parties, stabilisation works may then take place.

1.6 Future Proposals

It is proposed that the site will be restored in the long term in line with the planning permission. This geotechnical assessment has been carried out as the initial step towards achieving a safe working environment within the quarry by providing recommendations to increase stability of existing quarry faces and to provide guidelines for safe working practice during infilling and restoration of the site.

The various options available for closure and restoration of the site are discussed in detail within Section 3.0.
2.0 GEOTECHNICAL ASSESSMENT

2.1 Summary of Walkover Assessment

The walkover assessment was carried out on 30 January 2007. The list of observations is included as Appendix A and photographs of the site are included as Appendix B. The observation and photograph locations are shown on Drawing 2.

Filching Quarry is approximately rectangular in shape and is only accessible from the eastern boundary. A steep ramp is present allowing foot access from just within the site entrance down to the quarry floor; however, the ramp is in poor condition and is covered with rockfall debris, having not been used for a number of years. It was noted during the walkover that the safety fence is no longer continuous around the crest of the quarry, in contravention to point 18 of the planning permission.

The quarry void is approximately 135m x 160m at its maximum extent and is between 30-56m deep. The quarry crest is approximately level and exists at between 126-132m AOD along the northern, western and western half of the southern boundary. The crest height drops down to around 100m AOD along the eastern boundary from the north-eastern corner and from the centre of the southern face.

2.1.1 Joint Orientations

A number of joint sets within the Chalk were identified during the walkover survey. Although access to the faces was limited, a number of orientation measurements were recorded for the north, west and south faces. These were used to produce equal area stereographic projections of the data to confirm the failure types observed during the walkover survey. Stereographic projection is an effective way of graphically presenting three dimensional joint orientation measurements, marking their poles and intersection in relation to a reference sphere. This graphical information can be used to anticipate indicative failure methods by taking into consideration the measured joint sets and their interaction with the corresponding quarry face.

The stereonet projections for the north, west and south quarry faces are presented within Appendix C and are also reproduced on the site survey plan.

It should be noted that due to restricted access to the quarry faces and significant health and safety issues on site, these stereonet plots were produced from a very limited data set. The readings are indicative of the main joint sets identified during the walkover survey and should not be taken as a definitive record of all discontinuities present within the quarry. It is however considered that the stereonets confirm the types of failure identified within the quarry.

2.1.2 Failure Mechanisms

The potential modes of failure in a jointed rock mass are dependent upon the spatial orientation between the various joint set and quarry face. The figure below illustrates the possible failure modes.
The fact that a potential mode of failure exists does not necessarily mean that the factor of safety is sufficiently low for failure to occur.

All three rotational, planar and toppling potential modes of failure presented above were observed on site and with past and active failure at a number of locations which are discussed in the following sections.

2.2 Primary Identified Issues

From the site observations and photographs, it can be seen that there is considerable variation in the quality, and therefore resultant strength, of the Chalk outcropping within the quarry void. Bedding across the site is near horizontal and no groundwater seepages were observed in the exposed faces; a limited extent of standing water was noted in the base of the quarry which is likely to indicate the underlying groundwater level.

A summary of observations made during the site visit are presented in Appendix A. Where relevant, the locations of the features are indicated on Drawing No 2, with general and annotated photographs taken during the site visit included in Appendix B. Significant issues were identified during the site walkover; a summary of the primary stability issues at the site are detailed below.

2.2.1 Southern Face

From the observed failures in the southern face it is clear that there is risk of rotational failure from the upper slope (Middle Chalk) due to its weathered and very closely jointed nature. There is also a wedge type failure from the Middle Chalk, down through the Melbourn Rock and into the Lower Chalk at the western end of the southern face.

6 Hoek, E., Practical Rock Engineering (2007 ed.)
The Lower Chalk is observed as being less weathered than the Middle Chalk with closely spaced joints and a generally more competent, blocky nature. However, it does appear susceptible to failure when under the influence of loading from the weaker Middle Chalk above (see photograph 14).

The Melbourn Rock is an easily identifiable boundary between the Upper and Middle Chalk. It is stratigraphically placed at the base of the Middle Chalk and is visually very competent (tabular and blocky) in comparison to the surrounding Chalk. Past failures in the Lower Chalk have resulted in overhanging slabs (see photographs 19, 20 & 21) of the Melbourn Rock to remain exposed, which may be at risk of failure.

At the eastern end of the southern face, a block is present at the face of the crest with a large open release joint visible (see photograph 24 & 25). This block is at risk of toppling failure and will need to be removed/stabilised before any further work can continue within the quarry void.

2.2.2 Northern Face

The northern quarry face is dominated by the debris fan from a previous large planar failure which has occurred across the central western area (see photograph 2). The failure appears to be a joint controlled planar failure approximately parallel to the quarry face which has resulted in an approximate face angle of 60-65°. The resulting chalk scree at the base of the northern face lies with an angle of repose of 42°.

To the immediate west and east of the large planar failure are two large blocks at risk of toppling failure (see photograph 9 & 10). In particular, immediately to the east, the quarry face exists at 80-85° and observations made along the crest in this area show vertical displacement of approximately 30cm has already occurred over a 25m section of the face. Open release joints are noted on the back face of this block and it is considered that this area is at risk of imminent failure. It is recommended that both of these blocks will need to be removed and the northern face battered back to a safe angle of approximately 60°.

2.2.3 Western Face

The western face is currently standing at around 85° and is not showing any immediate sign of instability. This is considered to be due to a favourable joint orientation. There are however, areas within the upper section of the face where steep wedge failures have occurred and localised sections of the Melbourn Rock are overhanging. These are considered to represent the worst risk on the western face.

2.2.4 Eastern Face

The crest elevation drops and the quarry floor rises towards the east of the site. As such, the overall height of the quarry face in this area is limited. No significant risk of failure was identified on the eastern face.

2.3 Quantitative Stability Analysis

Stability analyses are normally undertaken as part of the quarry face design procedure; where the quarry is very old, formal designs and analyses rarely exist as the design and excavation has often been undertaken by the site foreman on an ad hoc basis. At Filching Quarry, no formal designs exist and there is no intention in re-activating the quarry, however, in order to assess the current level of stability some form of quantitative analysis is required. The assessments based on the joint measurement are qualitative and only give an indication
of the potential for instability which has confirmed the mechanism of the observed slope failures.

A quantitative stability analysis would normally only be undertaken where actual strength parameters were available for the soil or rock under consideration. Where the stability is wholly or partially controlled by the rock structure (joint orientation and spacing) it is generally very difficult to get realistic data on the mass strength across the joint.

At Filching Quarry an old planar failure exists which can be back-analysed to obtain average rock mass strength. By running a series of stability analyses for presumed failed slope geometry and adjusting the mass strength to achieve a factor of safety close to unity, it is possible to obtain an approximately realistic rock mass characteristic strength.

2.3.1 Assumptions Made Before Analysis

The stability analysis is has been carried out using the limit equilibrium software package SLOPE/W Version 6.20 (Geo-Slope International). The Morgenstern-Price\(^7\) non-circular method of analysis has been used.

Material shear strength properties used in the analysis have been estimated using the Hoek & Brown\(^8\) model of non-linear shear strength for rock, calculated within Slope/W. The input parameters used to derive shear strengths (uniaxial compressive strength \(\sigma_{ci}\), rock type constant \(m_r\), geological strength index, GSI, and rock mass disturbance factor, \(D\)) are based on observations made during the walkover survey.

2.3.2 Analysis

A quantitative stability analyses of the pre and post failure northern quarry faces is has been carried out to illustrate the increasing factor of safety that can be achieved as a result of benching of the quarry face.

The analysis considers the observed failure mechanism on the northern quarry face. Figure 1 above indicates an indicative factor of safety for the pre-failure condition on the northern face. Figure 2 illustrates the improvement in the factor of safety achieved by regrading and benching of the steep quarry face. A maximum pre-failure quarry face height of 49m has been modelled at gradients of between 55° and 75° is considered.

Figure 1 analyses the factor of safety for a typical steep face within the quarry. A low factor of safety was determined; this confirms a high risk of failure as noted on site.

Figure 2 analyses the factor of safety following benching of the Chalk faces. General guidance has been taken from the Quarry Regulations in determining the maximum allowable bench heights and gradients for each rock type. Following benching, an acceptable factor of safety (>1.3) is achieved.

Although benching is one option considered for stabilising the existing steep quarry faces, this can also be achieved by buttressing with inert waste. It is considered that this could be carried out by progressive infilling from the eastern end of the site while maintaining a suitable standoff from quarry faces. This option has not been analysed as following filling the buttressing effect of the inert waste placed to a relatively shallow sloping restoration profile will provide a high factor of safety for stability.
3.0 DISCUSSION AND RECOMMENDATIONS

There are several aspects which need to be addressed to achieve the restoration of Filching Quarry and are a number of parties that must be consulted and agreement obtained from the HSE, the Environment Agency and the local Planning Authority before any work can be undertaken. The process is likely to be iterative and it is recommended that outline proposals are developed and circulated to all parties prior to convening a joint meeting to approve a way forward.

The work undertaken to date indicates that there are a number of potentially unstable areas in the quarry and, even if there were no prohibition notice, the quarry could not be operated in its current state under the Quarries Regulations. The following sections present a discussion on the options for dealing with the unstable slopes and achieving an appropriate level of restoration without compromising the visual impact or the health and safety of operatives within the quarry void.

The options for making the quarry safe are:

1. Regrade the existing slopes to a safe gradient that would be consistent with the Quarry Regulation guidelines.
2. Buttressing the slopes with an appropriate fill.

It is considered that leaving the quarry in its existing condition is not a viable option in the long term, as the local planning authority requires that restoration of the site is completed by September 2017. Also, it is considered that the quarry faces will continue to degrade and encroach on the surrounding third party land.

3.1 Regrading Quarry Faces

Regrading the slopes would require cutting the quarry slopes in a series of benches no more than 15m high for competent rock and no more than 7.5m high for weak rock or soil. This will result in additional land take at the crest of the existing quarry of up to 30m. This option is likely to be unacceptable on a number of grounds including

1. Substantially increased visual impact.
2. Increased noise and dust levels.
3. The need for agreement with the neighbouring landowner, whose consent would be required.

Although technically possible, the process of regrading/benching would be very difficult to complete safely using conventional plant due to the quality of the Chalk. Regrading would also require importing additional fill materials to provide a suitable final restoration landform.

3.2 Buttress Quarry Faces

An alternative to regrading would be to buttress the slopes with suitable fill. At present, some of the slopes are partially buttressed with slip debris, and whilst of limited extent, does appear to be working well. It is suggested that the slopes are not left to degrade naturally in an uncontrolled manner, but for the planning authorities to allow the import of uncontaminated, inert fill.
A safe method of working can be devised that would allow the placement of fill without compromising the health and safety of operatives. Such a solution would first require the removal of the unstable blocks identified in the walkover assessment. This work is rather specialised and should therefore only be carried out by a specialist contractor. The appointed contractor, following a review of the site, would be able to provide a method statement and health and safety plan for the stabilisation works, which should be submitted to the HSE for approval prior to the work being carried out.

Following removal of the identified unstable material the quarry could be infilled to the agreed restoration levels with imported inert fill. This could be carried out by progressively by end tipping from the eastern corner of the site, while maintaining a standoff from the quarry faces. When infilling has reduced the height of the exposed quarry faces to an acceptable level, filling may be extended laterally to fill the entire void. An advantage of this would be that any plant or personnel working on site would be protected from rockfalls by a containment trench formed around the base of the exposed faces.

It should be noted that it is not proposed to use imported mineral or aggregate as this is considered to be environmentally and ecologically unacceptable, but to use imported inert waste. This is likely to be considered as a waste handling operation by the Environment Agency and would thus require approval as the site could technically be reclassified as a landfill. However, it is proposed that the work could be undertaken under a Landfill Recovery Licence where the inert waste would be used stabilise an unstable slope rather than send the material to landfill.

3.3 Suggested Programme for Restoration

Prior to commissioning any further work, there should be a series of discussions to ascertain the views of the HSE, EA and LPA to the use of imported inert fill (inert waste) for use as a restoration fill. This could be a protracted operation and will probably require more detail than is contained within this report.

Submit a restoration scheme to the local planning authority for approval detailing:

1. Proposals for scaling to loose and potential slip areas on the quarried face.
2. Proposals for quarry restoration by infilling with inert waste and the proposed restoration level.
3. The proposal for re-spreading overburden and soils to create the restored surface i.e. proposed thickness of restoration soils.
4. Measures to ensure adequate drainage and to control surface water.
5. Arrangements for the treatment of the restored surface i.e. aftercare of proposed planting.
6. A timescale for implementation.

Submit stabilisation method statement and health and safety plan to HSE and enter into further discussion to allow removal of the prohibition notice.

Under agreement from the HSE and any other interested parties, removal of unstable blocks may be carried out. It should be noted that this is a hazardous exercise and should only be attempted by a specialist contractor.
APPENDIX A

OBSERVATIONS

The site inspection noted the following features as being relevant to the quarry stability and the safety of personnel and the public.

<table>
<thead>
<tr>
<th>Location</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location 00</td>
<td>Perimeter fence has fallen over due to rotted wooden posts. Observation made from quarry face crest indicates very steep face angle (>70°).</td>
</tr>
<tr>
<td>Location 01</td>
<td>Collapse of the upper face cutting into the southern quarry face crest is noted at this location and is shown on Photograph 1. Photograph taken of the western face (8) indicates a generally stable condition, with only relatively minor wedge failure having occurred from the upper section.</td>
</tr>
<tr>
<td>Location 02</td>
<td>Overgrown access ramp onto a sloping bench noted at this location (Photograph 5). Photograph 6 shows the view towards the ESE and shows the undulating nature of the quarry side slope crest. This appears to have formed subsequent to mineral extraction by a series of minor slips. Scree from these slips is observed as accumulating upon the disused bench.</td>
</tr>
<tr>
<td>Location 03</td>
<td>Photograph 7 taken from this location more clearly shows the progressive failures from the upper section of the southern quarry face with scree deposited upon the bench below.</td>
</tr>
<tr>
<td>Location 04</td>
<td>Taken looking east from this location, photograph 9 shows a section of the face at risk of toppling failure. Note the open release joint and undermining of the crest above. This is also seen in photograph 4 taken from location 2. Photograph 12 is a view further along the northern face where a promontory is seen with vertically persistent sub-vertical jointing. A small step can be seen in the top of the face indicating minor movement of this block. Both of these areas are considered to be at imminent risk of failure. Photograph 2 taken from location 2 looking north shows where the large central section of the northern face has previously failed resulting in a large scree pile against the lower quarry face. A predominantly planar failure surface is observed; the surface was not accessible although the angle is estimated at between 65-70° for the lower slope and up to 80° on the upper slope. It is also noted in this photograph that the upper face appears much more unstructured than the lower slope, which has clearly more predominant bedding features. Also taken from location 04 are views of the southern quarry face. Photograph 8 shows a potential area of toppling failure in the south-eastern corner of the quarry. Photograph 14 is a view of the western end of the southern face, clearly showing relatively recent failure below the bench level. This photograph also shows the stratigraphical structure within the quarry. The uppermost unit, located above the bench shows as a light grey unit which appears to have poor structure and is at risk of relatively small failure. The middle unit is seen as the area immediately below the bench which is dark grey in colour. This unit has slightly more structure that the upper unit, but appears to at risk of wedge type failures. Below this middle unit is a more competent lighter colour band of chalk which is underlain by the thick basal unit which is light brown in colour. These two units appear to be more structures and competent than those above, and do not appear to have been effected by stability failure since previous extraction took place.</td>
</tr>
<tr>
<td>Location 05</td>
<td>At this location, a large planar failure has occurred, with the slip debris forming a substantial pile against the lower northern face; this is clearly seen in photograph 2. Photograph 12 shows the profile of the failed surface; the lower back scarp is</td>
</tr>
</tbody>
</table>
at an angle of approximately 65-70° and the upper back scarp is at the steeper angle of approximately 80-85°.
Photograph 12 shows the view to the east from location 5 showing a large block of material with open sub-vertical release joints and a small step in the crest. This indicates previous movement of the block and risk of failure of this block in the near future.

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location 06</td>
<td>This is location of the unstable block observed to the east of location 5. A clear step in the ground surface is seen where failure along the back of the block has occurred previously.</td>
</tr>
<tr>
<td>Location 07</td>
<td>Close inspection of the exposed face in this location reveals very close to widely spaced, open jointed chalk. The chalk blocks are light reddish grey in colour and friable.</td>
</tr>
<tr>
<td>Location 08</td>
<td>The northern face at this location shows near horizontal bedding with interbedded hard blocky and soft fractured chalk. One of the major joint sets is parallel to the face and has formed a release surface for the earlier slip, and the potential toppling/slip failure to the east.</td>
</tr>
<tr>
<td>Location 09</td>
<td>The western face observed from this location is measures at an angle of 85°.</td>
</tr>
</tbody>
</table>
Appendix:
Annotated Site Photographs B

FILCHING QUARRY
GEOTECHNICAL ASSESSMENT
MAR 2007 N/A
Revision B
402.0978.00002 JC

- Inadequate Fencing
- Note step in crest
- Block at risk of planar failure
- Open release joints
- Failure surface
- Risk of toppling failure
- Failure debris
Northern Quarry Face
Joint Orientations
Joint Measurement Pole

Quarry Face Crest

FILCHING QUARRY
GEOTECHNICAL ASSESSMENT

Date: MAR 2007
Scale: N/A

Drawing:
Southern Quarry Face Joint Orientations
Western Quarry Face
Joint Orientations
Prohibition notice

Name: Chapman Chalk Supplies Ltd
Address: Chapman House, The Old Stone Quarry, North Farm Road, Tunbridge Wells, Kent.

Trading as: *Simon Barnard Longbottom*
Inspector’s full name: one of Her Majesty’s Inspectors of Health and Safety
Inspection’s official designation: being an inspector appointed by an instrument in writing made pursuant to section 19 of the said Act and entitled to issue this notice
Official address: of International House, Dover Place, Ashford, Kent. TN23 1NU
Telephone number: 0233 624658

hereby give you notice that I am of the opinion that the following activities namely:
The extraction of mineral from any part of Pilching quarry, which are being carried on or are likely to be carried on by you/under your control* at
Filching Quarry, Jevington, East Sussex

involve, or will involve, a risk of serious personal injury, and that the matters which
give rise* to the said risk(s) are: danger from falls of ground

and that the said matters involve/ will involve a contravention of the following
statutory provisions: Health and Safety at Work etc Act 1974, Sections 2(1),
3(1), and 4(2).

because any further excavating activity at or in the vicinity of the
quarry faces may give rise to falls of ground

and I hereby direct that the said activities shall not be carried on by you or under your control immediately/after: *
unless the said contravention(s) * and matters have been remedied.

I further direct that the measures specified in the schedule which forms part of this notice shall be taken
to remedy the said contravention(s) * or matters.*

Signature:
Date: 14/6/90

* A Prohibition Notice is also being served on
related to the matters contained in this notice

Environment and Safety Information Act 1988
This is a relevant notice for the purposes of the Environment and Safety Information Act 1988
This page-only will form the register entry*.
Signature:
Date: 14/6/90

* This entry is compulsary
EAST SUSSEX COUNTY COUNCIL

ENVIRONMENT ACT 1995 (SECTION 96 AND PARAGRAPH 9 OF SCHEDULE 13/PARAGRAPH 6 OF SCHEDULE 14)

REVIEW OF MINERAL PLANNING PERMISSIONS

To: Mr P G Burgess
 c/o Michael Maurice Slot Solicitors
 20 Parkhurst Road
 Bexhill-on-Sea
 TN40 IDF

County Ref. No. MR1 & K/48/574
District Ref. No. WD/97/6066/FCM

In pursuance of their powers under the above-mentioned Act, the Council as the local planning authority attaches the following conditions to planning permission K/48/574, Filching Chalk Quarry, Jevington, in accordance with your application received by the Director of Transport and Environment of East Sussex County Council on 11 July 1997:

Time Limits

1. The extraction of chalk and the restoration of the site shall be completed by 30 September 2017.

2. Notwithstanding the provisions of the Town and Country Planning (General Permitted Development) Order 1995, or any other order revoking and re-enacting that Order, no buildings, fixed plant, structures or machinery shall be erected on site without the prior written agreement of the Director of Transport and Environment.

3. Within a period of 6 months following the completion of extraction of chalk, all buildings, structures, plant and machinery shall be removed from the site.

Access and Traffic

4. The site access to the C40 Jevington Road shall be maintained free of pot holes, ruts or other damage, and kept clean and free of mud and other debris at all times throughout the period of chalk extraction.

5. No lorries shall enter or leave the site other than between the hours of 7.30 am and 5.00 pm on Monday to Friday, and 7.30 am and 12.00 pm on Saturday, and no lorries shall enter or leave the site on Sundays or Public/Bank holidays without the prior written consent of the Director of Transport and Environment.

6. The number of lorry movements to and from the site per day shall not exceed 80 (40 return trips) on Monday to Friday inclusive, and 40 (20 return trips) on Saturdays.
7. All lorries entering and leaving the site shall travel northwards along the C40 to Polegate and no lorry shall turn south from the site entrance, or use C40 Polegate High Street.

Working Programme

8. Operations on the site shall only take place between 7.30 am and 5.30 pm on Monday to Friday, and 7.30 am and 12.00 pm on Saturday, and no operations shall take place on Sunday or Public/Bank holidays without the prior written consent of the Director of Transport and Environment.

9. No further extraction shall take place until a scheme of working to include a statement and plans at 1:500 scale, has been submitted to and approved in writing by the Director of Transport and Environment. The scheme of working shall include the following details:

a) the phasing, direction and method of operations;

b) the location and height of any screening bunds, including topsoil, subsoil and overburden stockpiles;

c) the mobile plant and/or machinery to be used on site;

d) the location and design of the site office;

e) the slopes of the proposed excavation and the location and dimensions of internal haul roads;

f) the location and details of a wheel wash facility;

g) the construction details of the quarry haul road between the quarry gates and the working face.

10. The schemes approved pursuant to condition 9 shall be implemented for the duration of the extraction of chalk at the site.

11. No excavation shall take place within 5 m of the application boundary.

Dust

12. The loads of all vehicles leaving the site shall be fully covered by sheeting.

13. No excavation of chalk shall take place until the Director of Transport and Environment has approved suitable water spray equipment to be provided on the site, and this equipment shall be used and maintained in full working order to ensure that the haul road and the access road are kept free of dust.

Noise

14. The noise from operations on site shall not exceed 55dB Leq (1 hour) when measured at the point shown on the attached plan.
15. No vehicles, plant or machinery shall be operated on the site unless fitted with silencing equipment to a standard not less than the manufacturer's standard specification for the equipment.

Drainage and Pollution Control

16. A detailed scheme demonstrating how ground waters and the underground aquifer are to be protected from pollution shall be submitted to the Director of Transport and Environment. No extraction shall take place until such a scheme has been approved by the Director of Transport and Environment. The approved scheme shall be implemented for the duration of the development hereby permitted.

17. No deepening of the quarry shall take place below the lowest point of working at the date of this approval and in any instance no excavation of chalk shall take place below a level of 40 m AOD.

Landscaping

18. The site shall be secured on all boundaries by safety fencing to the satisfaction of the Director of Transport and Environment and the fence shall remain complete and intact for the duration of the development.

19. No development shall take place until a scheme for the landscaping of the site has been submitted to and approved in writing by the Director of Transport and Environment. The approved scheme shall provide for:
 a) the maintenance and management of existing trees and vegetation around the site;
 b) seeding and planting proposals adjoining the site entrance;
 c) a timescale for implementation.

Waste

20. No waste materials of any description shall be imported into the site, except as may be required for the construction of hardstanding and haul roads in accordance with arrangements to be previously agreed in writing by the Director of Transport and Environment.

Restoration and Aftercare

21. No excavation shall take place until a detailed restoration scheme has been submitted to and approved in writing by the Director of Transport and Environment. The approved scheme shall detail arrangements for the restoration of the site for an amenity and wildlife after-use and shall include the following matters:
 a) the proposals for re-grading the quarried surface:
b) the proposals for re-spraying overburden and soils to create the restored surface;

c) measures to ensure adequate drainage and to control surface water;

d) arrangements for the treatment of the restored surface;

e) a timescale for implementation.

22. An aftercare scheme must be submitted to the Director of Transport and Environment not later than one year prior to the completion of the agreed restoration scheme referred to in condition 21 above or at such other time as may be previously approved in writing by the Director of Transport and Environment. The aftercare scheme shall include details of site maintenance to accord with the restoration scheme.

23. The approved aftercare scheme shall be implemented for a period of not less than 5 years following the date of completion, to the satisfaction of the Director of Transport and Environment, of the restoration scheme referred to in condition 21 above.

The reasons for the conditions above are:-

1. To enable the County Planning Authority to regulate and control the use of the site.

2. To enable the County Planning Authority to regulate and control the development of the land.

3. To provide for the proper restoration of the site.

4. In the interests of public and highway safety.

5. To safeguard the amenities of the occupants of properties in the vicinity of the site.

6. In the interests of amenity

7. In the interests of public and highway safety.

8. To safeguard the amenities of the occupants of properties in the vicinity of the site.

9. To enable the County Planning Authority to regulate and control the use of the site.

10. For the avoidance of doubt

11. In the interests of safety and to enable the County Planning Authority to regulate and control the development of the site.

12. To safeguard the amenities of occupants of properties in the vicinity of the site and in the interests of public and highway safety

13. In the interests of public and highway safety.
14. To safeguard the aural amenities of occupiers of properties in the vicinity of the site.
15. To safeguard the aural amenities of occupiers of properties in the vicinity of the site.
16. To prevent water pollution.
17. To prevent water pollution.
18. In the interests of public safety.
19. To enhance the general appearance of the development.
20. To enable the County Planning Authority to regulate and control the use and development of the site.
21. To provide for proper restoration of the site.
22. To provide for proper aftercare of the site.
23. To provide for proper aftercare of the site.

APPROVED PLANS

Site Plan Scale 1:2,500 MR/1 produced by East Sussex County Council.

INFORMATIVE

The applicant is advised that due regard must be paid to the Wildlife and Countryside Act 1981, in particular the provisions under Section 1 Protection of Wild Birds and more specifically the protection from disturbance of birds listed in Schedule 1 of the Act.

All enquiries should be addressed to ... Signed

Stephen Aden

for (Director of Transport and Environment)

The Director of Transport and Environment
Transport and Environment Department
Sackville House
Brooks Close
Lewes. BN7 1UE

Date 31/10/97

Copies to: Director of Transport and Environment - f.a.o B Stokes
Director of Transport and Environment - f.a.o. R Thomas
Mr P Coffey - Wealden District Council
N Waterson MP

CPWOCJ
ADMINISTRATIVE COUNTY OF EAST SUSSEX

MAILSHAM RURAL BOROUGH COUNCIL DISTRICT

Town and Country Planning Act, 1947

PERMISSION TO DEVELOP LAND SUBJECT TO CONDITIONS

To Messrs. C. Barker & Son,
Yelvington Lime Works,
Yevilton.

Proposed continued working and extension of Chalk Pit, Yelvington Lime Works, Yevilton.

In pursuance of the powers delegated to them by the East Sussex County Council under the above Act and the Town and Country Planning (General Development) Order, 1948, the above-named Council hereby permit you to develop land in accordance with the proposals set out in your Application dated 28th December, 1948, and shown on the plan(s) submitted therewith, subject to the conditions specified in the Schedule attached hereto (1 sheet).

The reasons for imposing the conditions referred to are given below.

This permission is granted subject to due compliance with the New Street and Building Bye-laws and general statutory provisions in force in the area and nothing herein shall be regarded as dispensing with such compliance.

The Applicant should read the note printed on the back of this form.

A copy of the plan(s) is returned herewith.

Reasons for Imposing Conditions

1. To secure proper order and limits of working and treatment of excavated areas;
2. To enable the local planning authority to regulate and control the future development of the land; and
3. To safeguard the amenities of the area.

Clerk

Date: 24th December, 1948

Fees £15.0.0
SCHEDULE OF CONDITIONS

attached to Permission No. ____________

Permission to develop land to which this Schedule is attached is granted subject to the following conditions:

1. The winning and working of chalk shall take place in accordance with an orderly programme of operations in a north-westerly direction;
2. No excavations shall be carried out nearer than 10 feet to the boundaries of the site;
3. On completion of the excavation the bottom and sides of the pit shall be finished off to the satisfaction of the Local Planning Authority;
4. Any waste materials shall be disposed of in accordance with arrangements approved by the Local Planning Authority;
5. No building plant or machinery or structure or erection in the nature of plant and machinery shall be erected on or adjacent to the land except with the approval of the Local Planning Authority and no power driven tools shall be used on the land except with like approval;
6. All plant buildings structures erections and machinery connected with the winning, working, treatment or disposal of the chalk and the restoration of the site shall be removed at such time or times as the operator and the Local Planning Authority agree that they are no longer required for such purposes;
7. The control of the emission of any smoke dust or smell caused by the winning, working, treatment or disposal of the chalk shall be to the reasonable satisfaction of the Local Planning Authority;
8. The area around the site of the excavation shall be fenced to provide a safety barrier to the satisfaction of the Local Planning Authority;
9. Any dispute in connection with the works to be carried out in connection with Conditions 3, 4, 6, 7 and 8 shall be referred to a single arbitrator appointed by the parties from among the members of the Royal Institution of Chartered Surveyors or in default of agreement by the resident for the time being of the said Royal Institution, who shall have all the powers conferred upon arbitrators by the Arbitration Acts, 1878 and 1930, or any statutory modification thereof.